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FIXEDWIDTH CONFIDENCE INTERVALS IN LINEAR REGRESSION WITH

APPLICATIONS TO THE JOHNSONNEYMAN TECHNIQUE

Abstract

Fixedwidth confidence intervals for a population regression line

over a finite interval of x have recently been derived by Gafarian.

The method is extended to provide fixedwidth confidence intervals for

the difference between two population regression lines, resulting in a

simple procedure analogous to the Johnson .-Neyman technique.



FIXED-WIDTH. CONFIDENCE INTERVALS IN LINEAR RET2,ESSIUN WITH

APPLICATIONS TO TILE JOHNSO-NEDIAN TECHNIQUE

1. SUMMARY AND INTRODUCTION

In the simple linear regression model, the length of the confidence

interval for a predicted y at a given x depends on x , increasing as

x departs from x . Simultaneous confidence intervals for the predicted

y for all x are given by the well-known Working-Hotelling [1929] hyper-

bolic band (Miller, 1966, p. 111) . Gafarian [1964 ] has recently derived

simultaneous fixed-width confidence intervals for the predicted y , for

all x in a finite range centered at x , and has provided tables for

the calculation of these intervals .

An important application of the Working-Hotelling confidence band

is in two-group analysis of covariance with a single covariate, when the

two population regression lines are not parallel. The Johnson-Neyman

[1936] technique, as modified by Potthoff [196)4], for locating the values

of x for which a significant difference can be asserted between the

population regression lines , is a simple application of the Working-

Hotelling procedure.

The fixed-width confidence interval procedure of -;.farian may also

be applied to the above analysis of covariance model, providing a different

and simple procedure for locating the values of x for which a significant

difference can be asserted. Gafariant s tables, with slight modifications,

may be used in this procedure.
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Conclusions are drawn about the relative merits of the two procedures,

and an example is given.

2. TIE WORKING-ITOTELLING AND GAFARIAN BANDS

For the linear regression model

y = X13 + c

where

1 1 1
=

1 x2 xn] (130,131) Yr)

and c - N(0 2 In) , the (unbiased) maximum likelihood estimates of and

cr
2 are

(vx)-lxiy = s-lx,y ,

(yey y'XI3)/(n - 2)

and the covariance matrix of (IA is

1
_2

2-1 2
Sol

S S
10 11 02

E (x. - 5)2
0 S = 0

x

E(x.

1

E - )
2

Z (x x )
_
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A 100(1 - Cx)` g) confidence interval for p 4- p = p where1 0 - -0 ,

x' (1 x
0

) , when
0

is specified, is
0

/ -1 1/2no c tan2 0.()fp xo)

If simultaneous confidence intervals for all x with confidence coefficient

ta/2
a ,1/2

100(1 - (x)ro are required, then is replaced by (2F2,
n -2]

producing the Working-Hotelling confidence band for the entire regression

line:

13tx c 13'x PFC24,11_2) tr(x'S-1x)1/2

(see Miller, 1966, p. 111, for further details).

In all practical cases, however, we will be interested in the

regression equation over a finite range of x , say a < x < b . For such

a range, the Working-Hotelling band will have a confidence coefficient

greater than 100(1 - a)%, so this band is wastefully wide.

Gafarian [1964] derived fixed-width simultaneous confidence intervals

over a finite range by the following argument. If the linear model is

reparametrized as

y = )0.7

where
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1 1 1

X"
1 2

2A
then a is as before, and

2' = (SA) ,

while the covariance matrix of Yo

x
n

- x

1 is

1
0 00 01

S s
2

0
062 51

= 02 (X*IX*) -1
62

1
=

2 2

10 11
= a

0 S*, S* 0
E.(xi - ;-)2.1

1

Then

and

(90 70)/se (90 70)/a

(".1 71)/sia

are independent standard normal variables, and hence

To = (90 - y0) /sob T1 = 7 Vs 81 1 1 1

have a bivariate t -distribution with n - 2 degrees of freedom

(see Dunnett & Sobel, 1954, Press 1972, p. 127). Then
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PO (Y- 7)t.1 <8 , (a,b))

= P( I soTo + s1(x < S , V x c (a,b ))

= IT° + si(x - )()Tilsol < 5/so x c (a,b))

and this probability is given by the integral of the bivariate t -density

over a parallelogram in the (t
0,

t 1) plane. Gafarian tabulates these

probabilities for the special case in which the interval (a,b) is symmetric

about x , i.e., a = x - h b = h . In this case the probabilities

reduce to a multiple of the integral of the density over the triangular

region with vertices (0,0) (0,8/sih) , (5/s0,0) . The probabilities

.are tabulated as a function of n c = soihsi and d = 5/so . Given

n c and the required confidence coefficient, d and hence 5 may be

obtained. The bivariate t -density has not been integrated over more

general parallelograms.

3. APPLICATION. TO ANALYSIS OF CIDVARIANCE

Consider the two-sample analysis of covariance model with a single

covariate, when the regression lines are not parallel. Let

y = XS, + E

where

X' =

1

x
1

0

0

1

x2

0

0

. 1

x
n
1

0

0

1

1

1

. xn

. 1

xn

fit = (130, Pi) 132,133)
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This model represents the two regressions

y. =
o

4 131
a.

x. i = 1,...,n1

y.
3.

= f30 + f32 + (13
1

4 f33 )xi i = n1 + 1, ...,n

Unbiased maximwn likelihood estimates are again

13% = slr y ,

= (y'y - y' 4)/(n - 2)

and it is easily verified that the covariance matrix of ;3 is

where

-S-1
1 1

2 -1 2 1.1) a2
cr S = cr = i,j = 0,...,3

-Si]- Si]-
-1

1 1
+ S2_

-2

1 xl xl
n1 n1 n1

- 2 - 2
E (xi xi)

i=1
E (xi x1)

3. 1

1

n
1

- 2
E (x.

a.

- xl)

i=1
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....c._

21 x -2
in2 n - 2

(x. x 2) E (y - F )2
*i 2i=n1 -11 i=n

1+1

1

-(x.-Y.2 )
2

i=n
1

1

so that, for example,

S33 1 + 1
_ n1 n - 2

-
x1) i=n1 I 1

2 E (x. - x )E (x. - x 1) 1 2
i=1 1

where X is the mean of x for the j -th group ( j = 1, 2 ). The

distance between the population regression lines at x = x0 is (32 + p3x0 ,

and a 100(1 - a)% confidence interval for this distance, when x0 is
specified, is

tap 6,(s22
+
,,23

0
x2s33)1/2

p + ,x c + x +
2

p
0 2

'13

3 0 4 "0"
If simultaneous confidence intervals for all x are desired with confidence

r ,coefficient 100(1 - a) %, then tal 2
4

is replaced by t2Fa
I
1/2 (see

Potthoff, 19614), and we obtain

p 1/2 ats22 2xs23 x2s33 )1/2_ x c IS x (? nld2
+ (3) 2 +

3
± + 2

Again, in practical cases, our interest will be limited to a finite

range of x . We now extend Gafariant s results to this case. First

reparametrize the model as

y X*y +c
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where

X*i
x1

L

1

-

0

0

k

1

x2 - k

0

0

n1

1

- k

0

0

1

xn
+1

1
1

xn -
1

k

k ..

1

xn - k

1

xn - k

where k is to be determined so that 5,2 and 93 are independently

distributed. The covariance matrix of the .}%i is now

where

2,-1 2
* =

-s
1 *slay 1

1 (si
1

- 02
(371 k)

n
1

n n
21 1

,E (xi - x1) E (x.
1

- )1; )2
i=1 i=1

and similarly for S2x. . Thus

cov6'2,93)

1
n1

E (x. -
1=1 1

k x2 - k
=

n1
E (x' 372)2i1 X(x.- 1)2 i=n
1+1=

1.0



and this is zero when

n1 n1

k = (37
'1

- ;2)2 +
e

E (x. -
1
)23/( E (xi - x1)- 2

i =n141 i=1

For this value of k we have

var(y2) = a2( 1

1

n - 2
E (x.

1
- x 2) )

i=n1+1

(Ri -c2 )2

R1)2 + E (x.
n141

2 2vary) = a2( + ) = s a
n

1 1

n - 2

1

3

E (x. x1)2 (xi - x2)
1 n

E

1+1

Then as in Section 2,

y2) /s2a and (y^3 73)/53G

) 22s2a

are independent standard normal variates, and hence

T2 = - y2)/s2a and T. = (y3 - 73)/s3a

have a bivariate t -distribution with n - degrees of freedom. Hence

13(15P2 -y2 - 73)(x - 101 < V x c (a,b))

Pfl T2 + s3(x - k)T3/s21 < Ei/s2 V x E (a, b ))
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Provided that (a,b) is symmetric about k, i.e., a = k h , b=k4-11,

these probabilities may be read directly from Gafarian's tables, with the

sample size minus 2 used for Gafarian's n , c = s
3
h/s2 , and d = bis2 .

Again given n , c and the required confidence coefficient, d and

hence 3 may be obtained. The confidence band is then

Y2 4 73(x k) °2 4 P3x c r12 '(33x t be
X E (k - h, k -+ h)

The inconvenient requirement of symmetry about k results from the

limited tables available.

4. RELATION TO THE JOHNSON-NEYNAN TECHNIQUE

The Johnson-Neyman technique is essentially the procedure for finding

those values of x for which the Working-Hotelling simultaneous confidence

intervals for the difference between the population regression lines do not

include zero, so that a significant difference between the population means

may be asserted for these values of x . The region of nonsignificance

may be defined as consisting of those values of x for which zero is

included in the confidence interval, i.e., for which

or

2
+

3
x)2 < 2F

4an-^2 (S
22

+ 2xS23 + x2S33)
2

Q,(x) = q2x2 + 2q
1
x +

(jE's3 .7\82s33 )x2 ,2 3
- ?\,:y

2)x
6 ) < 0

where 2\ = 2F2 -4 If the roots of Q(x) = 0 are imaginary, then the

region of nonsignificance is empty if q2 > 0 , and is the whole x -axis

if q2 < 0 . If the roots xe < xo are real, then the region of non-
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significance is x0 < x < xo if q
2
> 0 , and is x > x x < if

0

q
2
< 0 .

For the extension of the Gafarian technique, the region of nonsignifi-

cance consists of those x for which

2
+ 5x se < o < 2 + + ba

56 -k ba
< x.<

if P) >0 and

A

k -3- 58 -132 ba
< x <

A
if (3 < 0 . If both these values of x fall outside the interval (k + h) ,

on opposite sides of k , then the entire interval is a region of nonsignifi-

cance. If both fall outside, but on the same side of k , the region of

nonsignificance is empty.

5. EXAMPLE AND DISCUSSION

We illustrate the two procedures with an example from Walker and Lev

[1953, p. 402]. For two groups n1 = 8 and n2 = 10 slow readers, a pre-

test reading gain score x and a test gain score y were obtained. The

first group received play therapy, the second did not. The data required are

Group 1 n
1

8 R
1

0.03125 ,

1

i
(x - x

1
)
2

0.4197

0.9675 + 1.4401x

. 13
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Group 2 n
2

10 x2 = -0.1900

A2
a = 0.1091

n
-

2
E (x. - x )

2
0.6718 ,

n
1
+1

g = 0.2063 - 0.0881x

8 = 0.3303 .

The variances and covariance of fl

2'
fl

3
may be obtained by substituting in

a
2
S
-1

, but they are most easily obtained by limning the four variable

equation through a multiple regression program which outputs the covariance

matrix of the regression coefficients. By either method

A2 22
a S 0.03065 ,

6,2_23
6 = 0.02272

A2 33
a S = 0.42219 .

For the Johnson-Neyman technique, the quadratic Q(x) = 0 becomes,

taking 7 2F2014 7.48 ,

-0.8226x
2

+ 1.9866x + 0.3052 = 0

with roots -0.165 and 2.580. Since q2 < 0 , the region of nonsignificance

is x< -0.165 x > 2.580 (this differs from the result in Walker and Lev,

where the t critical value is used instead of F ).

For the Gafarian method, we must first decide on the range of x

over which the confidence interval is desired. The extreme values of x

in the original data are -0.6 and +0.33, while

k = ((0.03125)(0.6718) - (0.19)(0.4197))/(0.4197 + 0.6718)

= -0.05382
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We choose an interval symmetric about k which just includes the upper

value of x , i.e.) we take h = 0.39 (this will not cover the lower

value of x ; h would have to be increased to 0.55 to do this). Then

2 1 1 (0.22125)
2

s2 g 10 1.0915
0.26985

s
2

= 0.51947

2 1

53 577377 0.6718 3.87119

53 = 1.96753

c = 1.4772

From Gafarian's table) for c = 1.5 , n - 2 = 16 1 - a = .95 ,

d = 2.975 by interpolation, while for c = 1.4 n - 2 = 16 ,

1 - a = .95 , d = 3.050 by interpolation. Linear interpolation gives

d = 2.992 for c = 1.4772 . Hence 8 = ds2 = 1.554 , and the region of

nonsignificance is given by

ie.

-.7612 - (1.554)(3303) < x < -.7612 + (1.554)(3303)
1.5282 1.5282

-0.834 < x < -0.162 .

Note that the lower limit of x lies beyond k - h so the region of

nonsignificance is -0.444 < x < -0.162 . The practical conclusions are

identical from the two methods. For x > -0.162 (Gafarian) or -0.165

(Jrhnson- Neyman), the therapy group is superior to the nontherapy group.
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The Gafarian method restricts such conclusions to the range (-0.444,

0.336), while the Jchnson-Neyman method finds another nonsignificance

region for x > 2.580 . Since this is far beyond the range of the data,

it is of no practical interest.

t should be noted that the Gafarian method is very sensitive to h ,

i.e., to the length of the interval over which the confidence band is to

be constructed. If we wished to cover the entire range of x , then

h = 0.55 whence c = 1.0475 d = 3.454 5 = 1.794 , and the region

of nonsignificance is ( -0.886 <x < -0.110 ) . Thus h should be chosen

just large enough to cover the x -interval of practical interest.

It seems difficult to give a simple rule for the choice of the better

procedure. It is not, of course, valid to calculate both intervals and

choose the shorter, for the resulting interval will correspond to a

confidence coefficient less than the required 100(1 - a)%. Gafarian

finds the area of the fixed-width confidence band to be less than that of

the Working-Hotelling band restricted to the finite interval when c > 1.5

but greater when c < 1.5 , for a = .05 . It does not immediately follow

that the regions of significance will behave in the same way, but in the

absence of further information such a rule might be considered. The

above example lends some support to such a rule.
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